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Abstract 

We have measured the kinetics of death from hyperosmotic stress in unfertilized sea 
urchin eggs in an attempt to dissect the two conflicting influences of temperature lowering 
below the freezing point: as more ice forms during temperature lowering, the rate of injury 
increases rather than decreases. Two models are examined. An Arrhenius model, in which 
the osmotic stress imposed by extracellular ice formation is envisaged as reducing the 
“activation energy”, provides a qualitative model but fails to fit the data in detail. In 
contrast, a Johnson-Mehl-Avrami nucleation model, in which the osmotic stress triggers an 
autolysis that is essentially independent of temperature or degree of osmotic stress above a 
threshold value, fits the data well. Two separate decay processes were seen, for which the 
time constants were 269s and 658 s and the Avrami exponents were 7 and 1 respectively. 
The latter is an ordinary first-order attrition, though its independence from temperature 
distinguishes it from an Arrhenius model. The nucleation model is difficult to furnish with a 
simple physical representation. 

INTRODUCTION 

It has long been known [l] that perishable materials may be preserved 
longer at low temperatures and that if the temperature is low enough, the 
term of preservation is indefinite. This science of refrigeration or cryogen- 
ics concerned with the response of living material to the frozen state has 
been termed cryobiology [2]. While cryobiologists have enjoyed some 
marked successes at low temperature preservation, they have been acutely 
aware that there exists an intermediate range of temperatures, from just 
below freezing to perhaps -80°C which causes an accelerated rate of 
injury, a range through which the cryopreserved tissues must pass twice, 
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during freezing and during thawing [3]. This accelerated rate has generally 
been considered a consequence of the fo~ation of ice within the tissue 
and its effect upon osmotic or electrolytic stress if the ice is extracellular, 
and upon cell architecture if the ice is intracellular [4]. Lower subfreezing 
temperatures produce more rapid and severe damage; yet at very low 
temperatures the rates of virtually all chemical processes become so slow 
that cryopreservation is possible. Thus, lowering the temperature below the 
freezing point initiates two contradictory influences on the stability of the 
material to be cryopreserved. Most cryobiological successes have been 
achieved by a careful and empirical balancing of these opposing tendencies 
by control of cooling and warming rates and have required, in addition, the 
presence of molar or greater concentrations of a c~oprotectant, a chemical 
additive which acts to limit the amount of ice formed and the rate at which 
ice propagates. 

In this paper, we attempt to dissect and analyze separately the two 
contrasting effects of temperature using unfertilized sea urchin eggs as a 
cell type. As a biological model, these offer a number of advantages. They 
are well studied and a great deal is known about their response to various 
stimuli and stresses. Most importantly for our work, they are large and 
easily visible cells which remain spherical as they shrink under the influ- 
ence of hyperosmotic solutions, simpli~ing the interpretation of the stress- 
strain relationships. In sea water or in isotonic solutions and at tempera- 
tures to which they are adapted, they persist for several days without sign 
of change, but eventually die. They are naturally resistant to considerable 
freezing stress, or its equivalent in hyperosmotic stress, in the absence of 
artificial cryoprotectants. When they eventually succumb to excessive freez- 
ing or hyperosmotic stress, they exhibit a convenient “end point”: the cells 
rapidly darken and then disintegrate, a process termed “black cytolysis” 
[S’J. The relationship between freezing, osmotic stress and injury in sea 
urchin eggs has been examined in earlier papers [6,7], and an example of 
the complexity of the contrasting effects of temperature below freezing on 
specimen stability is shown in Fig. 1. 

The first model we tested is the simplest we could contrive which takes 
into account both the decelerating and accelerating action of temperatures 
below freezing point. For the isopiestic effects of temperature, we have 
chosen the Arrhenius expression. For the effects attributable to freezing 
but independent of temperature, we have chosen osmotic stress as the 
active agent, postulating that it supplies an “activation energy”. An analo- 
gous approach has been used to model failure of structural polymers [8]. 

An array of experiments varied in the details of their design and 
execution, but all consisted of a number of measurements of the time 
interval t between the application of an osmotic stress to the number of 
cells NO at a series of temperatures T above freezing and the number of 
cells N remaining after those intervals. The decrease in cell number with 
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Fig. 1. The complex events of osmotic stress cytolysis in unfertilized sea urchin eggs exposed 
to freezing. Temperature lowering below the freezing point, because it increases the degree 
of osmotic stress, paradoxically reduces the length of time which the eggs resist stress. From 
ref. 5, with permission. 

time was assumed to proceed at a first-order rate: F = - d N/N d t. The 
Arrhenius equation 

In F = In A - AH’/kT (1) 

in which A is a constant entropy term, AH* the “activation enthalpy” and 
k is the Boltzmann’s constant, was modified for our purposes: 

AH* = AH,- AH, (4 

where AH, is the activation enthalpy at zero (isomotic) stress and AH, is 
the enthalpy stored as a strain within the cell. The magnitude or even the 
form of the strain is virtually undefinable in cells, but because the osmotic 
stress cannot exceed the chemical potential of the stressful solution, 
relative to isotonic 

AH, < kT ln( P/P,) (3) 

and the strain would be coupled to the stress by an efficiency m, with a 
value between 0 and 1. Our complete initial model thus reads 

In F = In A - AH,/kT + m ln( P/P,) (4) 
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Alternatively, because the decay of individual cells might be autocat- 
alytic, we also examined a model of the Johnson-Mehl-Avrami type [9] 

In N,/N = (t/r)” 

in which r is a time constant in seconds and y1 is a constant, both to be 
determined empirically. 

EXPERIMENTAL 

The experiments reported here were all performed on Strongyocentrotus 
purpurutus obtained on three different dates from Bio-Marine Laborato- 
ries (Venice, CA) during the breeding season in February and in April. The 
water temperatures in their native environment are between 15 and 16°C. 
Sea water is, for the present purposes, 0.55 M NaCl. Unfertilized eggs were 
removed using classical KC1 injection methods [lo] and resuspended in 
artificial sea water (Instant Ocean: Aquarium Systems, Mentor, OH). For 
isothermal determinations, batches of eggs were suspended in test solutions 
made hyperosmotic with additional NaCl and a clock was started. Temper- 
ature control, accurate to about O.l”C, was provided for the sea urchins and 
their isolated eggs by either mechanical refrigerators or ice baths. The 
microscope was ‘equipped with a thermoelectrically controlled temperature 
stage of local manufacture and the same precision. For isopiestic determi- 
nations, cells were resuspended at a series of temperatures in each of the 
test solutions. Two measurement methods were used. In experiments which 
took long periods to complete, groups of cells were transferred to a 
microscope slide after specific time intervals, and the surviving cells per 100 
cells were counted. In experiments in which a rapid decline in cell numbers 
was anticipated, smaller numbers of cells were placed under the micro- 
scope immediately after resuspension and viewed continuously. The time at 
which each egg in the field underwent osmotic lysis was noted. In all, 329 
batches of eggs were measured, each batch containing between 10 and 200 
eggs. Statistical analysis was done using the computer program ~~11, 

version 3 (BBN, Boston, MA). 

RESULTS 

Figure 2 shows representative sets of isothermal data on the loss of sea 
urchin eggs resulting from hyperosmotic stress. Two illustrations are given 
in order to cover the range of relatively low stress at low temperatures and 
of high stress at temperatures close to normal for the species. Casual 
examination of these data indicates that the loss of stressed cells as a 
function of time appears to approximate a first-order model and that 
increasing stress increases the rate of loss in an apparently exponential 
manner. When the goodness-of-fit was measured in these sets of data 
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Fig. 2. Representative sets of data illustrating the loss of sea urchin eggs as a function of 
time under different levels of hyperosmotic stress. A. Exposure at 0°C to different concen- 
trations. Note that while cell loss is semilogarithmic and increasing stress accelerates the 
process, the intercept at zero time is less than unity at concentrations above i.5 M. B. 
Exposure at 15°C. Note that while higher osmotic stress makes decay more rapid, there is a 
delay at all concentrations before cells begin to decay at approximately the same rate. 

individually, r2 values ranged from 0.992 to 0.416. Only data sets with 
coefficients of correlation above 0.85, all but perhaps a dozen, were 
included in the analysis of the first model. Figure 2A shows a long 
experiment in which the cells surviving per 100 counted were recorded. A 
plot of estimated half-times for survival for these data at 0, 10, and 20°C 
showed good linearity and regressed on a zero stress (0.55 M) half-time of 
about 4 days. However, note that at hyperosmotic concentrations above 
1.25 M, cell survival does not regress on 100% at zero time. 

Figure ZB, a representative set of data from highly stressed cells whose 
time until lysis was brief enough to be observed directly under the micro- 
scope, shows other unexpected patterns. First, there is a delay of several 
minutes before black cytolysis begins and this appears to be somewhat 
affected by the degree of osmotic stress. Second, when cell loss does begin, 
it is quite linear but the rate of loss is not greatly affected by the degree of 
osmotic stress. 

Estimates of the activation enthalpy AH* when made from half-times 
for cell decay, show a regular decline from about 130 kJ at 1.5 M to under 
10 k.J at 2.5 M, indicating predictability in the determination of pn. 
However, when AH* was determined from the slope of In F as a function 
of l/T for all sets of data in accordance with the first (A~henius) model, 
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Fig. 3. A representative set of data analyzed according to the Johnson-Mehl-Avrami 
model. Note that there is an excellent fit to two slopes, representing a fast process and a 
slow process. See text for description. 

no such pattern appeared; the coefficients of correlation were too low 
(0.2-0.7) to have significance and thus to allow any interpretation. Esti- 
mates of pn by both methods ranged from 2 to over 12, but in no case were 
they significant (0.10 < r2 < 0.62). 

Because individual sets of data appeared to show such good linearity, we 
examined a second model of the Johnson-Mehl-Avrami type in which cell 
collapse begins from a nucleus. A representative set of data is given in Fig. 
3. Note that when l&n N,/N) is plotted as a function of In t, the data set 
breaks into two straight sections with a fast and a slow decay rate. When 
the fast and slow data sets were analyzed separately, coefficients of 
correlation ranged from 0.790 to 0.997; of the 43 sets analyzed, only four 
had r2 values below 0.900. There were, nevertheless, no consistent trends 
in either the isopiestic or isothermal values of either T or tt, allowing us to 
pool these data. The time constant T for the slow process was 657 f 182 s, 
and for the fast process, 267 f 68 s (mean and standard error, number = 15). 
The respective values for the exponent II were 1.00 fr 0.17 (number = 14) 
and 7.32 rt 2.50 (number = 15). There were, in addition, 16 sets in which 
only the fast process was seen before the sample under observation ran out 
of living cells. 

DISCUSSION 

BGlehridek [ll] was perhaps the first to observe that, despite its great 
intuitive appeal and its considerable utility in chemistry, the Arrhenius 
expression is inappropriate as a generality for describing biological pro- 
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cesses. His advice has been routinely ignored. The expression does, of 
course, give reasonable predictions in certain specific instances and over 
sufficiently small temperature ranges, but biological processes are too 
complex and interrelated, and biological clocks too well temperature-com- 
pensated to permit such a simple model of a more extensive scheme. In our 
data, in Fig. 2, an Arrhenius model, modified to take osmotic stress into 
account, does predict the tendencies but fails careful analysis of what are 
manifestly precise data. There is evidence of competing processes: under 
conditions favoring slow kinetics (Fig. 2A) there is a considerable cell loss 
before the semilogarithmic process begins; under conditions of high stress 
(Fig. 2B) there is a considerable lag before the cells begin to decay at about 
the same rate, irrespective of the level of stress. 

The decrease in the values of AH” at higher osmotic stresses was 
predicted by the model. However, the values of m in excess of unity were 
not: figuratively, osmotic stress acts as a trigger but the cell supplies most 
of the energy to destroy itself autocatalytically. Beyond a threshold value, it 
does not matter how hard the trigger is pulled. In retrospect, this should 
have been predictable, because an unfertilized sea urchin egg is a carefully 
designed metastable state looking for appropriate circumstances to decay, 
and black cytolysis in some of the many cases that we observed was almost 
a parody of the fertilization process. 

While we have demolished the applicability of our first model, at least to 
unfertilized sea urchin eggs, we have no similarly appealing model to 
substitute in its place. A mathematical, as opposed to a physical, model 
which appears to fit our data well is the Johnson-Mehl-Avrami [9] 
formalism of nucleation kinetics for spherical crystals 

2 = 1 - exp[ -4/3rl’1(T)y(7)3(t - 7)’ dT] 

= 1 - exp( - (v/3)1p3t4) (n = 4) (6) 

where I(T) is the constant nucleation rate and ~(7) is the constant growth 
rate. Thus a mean value of n of about seven is problematical, because the 
typical value is 2-4. An assumption of the formulation is that nucleus 
growth is constant in its linear dimension: dr/dt = p. Thus the mass 
converted is instantaneously dependent upon t 3 and when integrated over 
the lifetime of the population of nuclei, dependent upon t 4. To achieve a 
dependency of t’, one must integrate a function of t6 by setting dr/dt = pt. 
Then the equation for mass or volume conversion is proportional to r3 and 
its integral is a function of t6. 

In our search for a chemical mechanism corresponding to this model, we 
consider the general growth mechanism of a crystal of mass x (the constant 
has been normalized to unity for simplicity) 

dx/dt =x* (7) 
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In ordinary crystal growth, x = t3 and dx/dt = x2j3; in other words, the 
growth of the spherical crystal in the melt is proportional to its surface 
area, a reasonable assumption. However, if we assume that Y = t2, then 
dx/dt=x . 5/6 If the nucleus grows two-dimensionally, confined to a sur- 
face, then r = t3 and x is still equal to t6. When growth is dependent 
uniformly upon the whole crystal mass or volume, then the solution 
approaches an exponential growth given by dx/dt =x1, which for diffusion 
to a spherical surface makes no sense. 

However, for the collapse of a well-crafted spherical or disk-like struc- 
ture, this is a reasonable finding. The rate of collapse increases as the 
volume of damaged material increases, but not exactly in proportion if 
m < I. It is as if one has an expanding phase of structural breakdown which 
passes through a region with the highest probabili~ of failure in the newly 
recruited elements at the interface, but with some additional probability of 
failure distributed through the entire volume, a probability which decreases 
as the interface moves away. More formally, if the probability density of 
collapse is distributed as l/r, then the integral over the volume of the 
structure is 4a/r dr, or the probability (and thus the rate) is simply 
proportional to the area. If the probability density is uniformly distributed, 
we have 

411/r2 dr = (4~r,‘3)r” (8) 

so that the rate is simply proportional to the mass of damaged material. To 
obtain an x516 dependency we must postulate an t-ii2 probability density 
function, or 

4IIJr 3’2 dr = (8~/5)r”‘~ (9) 

Thus the integrand is r3j2 instead of Y* (exponential, bulk growth rate 
dependency) or r (interface-dependent growth). On a logarithmic scale, 
our measured dependency fafls neatly half-way between a bulk process and 
an interfacial process. 

This leaves unresolved the sudden change from fast to slow kinetics in 
most data sets. The slow process seems to begin at the end of the fast 
process, because there is so little interference. Consider at a time t -X T,, 
72: 

N/N, = exp -(t/~~)~ = 1 - (t/~,)~ (10) 

and 

N/N, = exp -(t/7,) = 1 - (t/9-,) (11) 

Because 72 2: 37i, then ~/~~ = 1 - (t/7-1)7 and ~/~~ = 1 - (t/37-,). These 
become equal at t = 0.857,, or roughly 200 s. At shorter times the contribu- 
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tion of the fast process rapidly becomes negligible. Likewise, at t > 0.857,, 
the fast process increases much more quickly than the slow process. Thus, 
if the slow process were operating at short times it would be the only 
process we could measure and if the fast process did not cease abruptly, 
the slow process would never be manifest. 

Perhaps, in a certain fraction of the cells, the osmotic stress causes the 
cytoskeleton and adjoining membrane to form lesions that reach a critical 
size and then collapse like a house of cards. This would represent the fast 
process. In the remaining fraction, the lesion would not reach critical size 
until stochastic forces uniformly distributed in time contributed to further 
breakdown. The result would be a Poisson process with a lag independent 
of temperature or the magnitude of the stress. 
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